(一) 附录 1: 算法 1 的证明

对于条件前向滤波 $a_t(j)$, 在 t=1 时, 显然有

$$a_1(j) = p(y_1, r_1 = j | y_{1-p}^0) = \pi_j f(y_1 | j)$$

对 $t \ge 2$, $\forall j \in \{1,L,K\}$,有

$$p(r_{t} = j | \mathbf{y}_{1}^{t-1}) = \frac{p(y_{t-1}, r_{t} = j | \mathbf{y}_{1}^{t-2})}{p(y_{t-1} | \mathbf{y}_{1}^{t-2})} = \frac{p(y_{t-1}, r_{t} = j | \mathbf{y}_{1}^{t-2})}{\sum_{k=1}^{K} p(y_{t-1}, r_{t} = k | \mathbf{y}_{1}^{t-2})}$$

上式中,

$$\begin{aligned} \mathbf{p}\Big(y_{t-1}, r_t &= j \, \Big| \, \mathbf{y}_1^{t-2} \Big) = \sum_{i=1}^K \mathbf{p}\Big(y_{t-1}, r_{t-1} &= i \, \Big| \, \mathbf{y}_1^{t-2} \Big) \mathbf{p}\Big(r_t &= j \, \Big| \, r_{t-1} &= i, \, \mathbf{y}_1^{t-1} \Big) \\ &= \sum_{i=1}^K \mathbf{p}\Big(y_{t-1}, r_{t-1} &= i \, \Big| \, \mathbf{y}_1^{t-2} \Big) \mathbf{p}\Big(r_t &= j \, \Big| \, r_{t-1} &= i \Big) \\ &= \sum_{i=1}^K a_{t-1}(i) s_{t-1}(i, j) \end{aligned}$$

综合以上,即得

$$\begin{aligned} a_{t}(j) &= \mathbf{p}\left(y_{t}, r_{t} = j \left| \mathbf{y}_{1}^{t-1} \right) = \mathbf{p}\left(r_{t} = j \left| \mathbf{y}_{1}^{t-1} \right) \mathbf{p}\left(y_{t} \left| r_{t} = j, \mathbf{y}_{1}^{t-1} \right) \right) \\ &= \frac{\sum_{i=1}^{K} a_{t-1}(i) s_{t-1}(i, j)}{\sum_{k=1}^{K} \sum_{i=1}^{K} a_{t-1}(i) s_{t-1}(i, k)} f\left(y_{t} \left| j \right.\right) \circ \end{aligned}$$

对于条件后向滤波 $b_t(j)$, 在 t=T 时, 令 $b_T(j)=1$, $\forall j \in \{1,L,K\}$; 在 t=T-1 时, 有 $\mathbf{p}\left(y_T,r_T=i\Big|r_{T-1}=j,\mathbf{y}_1^{T-1}\right)=\mathbf{p}\left(r_T=i\Big|r_{T-1}=j,\mathbf{y}_1^{T-1}\right)\mathbf{p}\left(y_T\Big|r_T=i,r_{T-1}=j,\mathbf{y}_1^{T-1}\right)$ $=s_{T-1}(j,i)f\left(y_T\Big|i\right),$

故

$$\begin{split} b_{T-1}(j) &= \sum_{i=1}^{K} \mathsf{p}\Big(y_{T}, r_{T} = i \Big| r_{T-1} = j, \mathbf{y}_{1}^{T-1} \Big) \\ &= \sum_{i=1}^{K} s_{T-1}(j, i) f\left(y_{T} \Big| i\right) = \sum_{i=1}^{K} s_{T-1}(j, i) b_{T}(i) f\left(y_{T} \Big| i\right); \\ &\stackrel{?}{\boxtimes} t \leq T - 2, \quad \forall j \in \{1, \mathbf{L}, K\}, \quad \overleftarrow{\sqcap} \\ &\mathsf{p}\Big(\mathbf{y}_{t+1}^{T} \Big| r_{t+1} = i, \mathbf{y}_{1}^{t} \Big) = \mathsf{p}\Big(\mathbf{y}_{t+2}^{T} \Big| r_{t+1} = i, \mathbf{y}_{1}^{t+1} \Big) \mathsf{p}\Big(y_{t+1} \Big| r_{t+1} = i, \mathbf{y}_{1}^{t} \Big) \\ &= b_{t+1}(i) f\left(y_{t+1} \Big| i\right) \\ &\mathsf{p}\Big(\mathbf{y}_{t+1}^{T}, r_{t+1} = i \Big| r_{t} = j, \mathbf{y}_{1}^{t} \Big) = \mathsf{p}\Big(r_{t+1} = i \Big| r_{t} = j, \mathbf{y}_{1}^{t} \Big) \mathsf{p}\Big(\mathbf{y}_{t+1}^{T} \Big| r_{t+1} = i, r_{t} = j, \mathbf{y}_{1}^{t} \Big) \\ &= \mathsf{p}\Big(r_{t+1} = i \Big| r_{t} = j \Big) \mathsf{p}\Big(\mathbf{y}_{t+1}^{T} \Big| r_{t+1} = i, \mathbf{y}_{1}^{t} \Big) \\ &= s_{t}(j, i) b_{t+1}(i) f\left(y_{t+1} \Big| i\right) \end{split}$$

故

$$b_{t}(j) = \sum_{i=1}^{K} p\left(y_{t+1}^{T}, r_{t+1} = i \middle| r_{t} = j, y_{1}^{t}\right) = \sum_{i=1}^{K} s_{t}(j, i) b_{t+1}(i) f\left(y_{t+1} \middle| i\right) \circ$$

(二) 附录 2: 推论 2 的证明

对
$$t = 1, L, T, \forall j \in \{1, L, K\}$$
,有
$$a_t(j)b_t(j) = p(y_t, r_t = j | \mathbf{y}_1^{t-1})p(\mathbf{y}_{t+1}^T | r_t = j, \mathbf{y}_1^t) = p(\mathbf{y}_t^T, r_t = j | \mathbf{y}_1^{t-1})$$

故

$$\zeta_{t}(j) = p(r_{t} = j | \mathbf{y}) = \frac{p(\mathbf{y}_{t}^{T}, r_{t} = j | \mathbf{y}_{1}^{t-1})}{p(\mathbf{y}_{t}^{T} | \mathbf{y}_{1}^{t-1})} = \frac{a_{t}(j)b_{t}(j)}{\sum_{k=1}^{K} a_{t}(k)b_{t}(k)}$$

对于
$$t = 1,L$$
 , $T-1$, $\forall i, j \in \{1,L$, $K\}$, 有
$$a_t(i)s_t(i,j)f\left(y_{t+1} \mid j\right)b_{t+1}(j)$$

$$= p\left(y_t, r_t = i \mid \mathbf{y}_1^{t-1}\right)p\left(r_{t+1} = j \mid r_t = i\right)p\left(y_{t+1} \mid r_{t+1} = j, \mathbf{y}_{t-p+1}^t\right)p\left(\mathbf{y}_{t+2}^T \mid r_{t+1} = j, \mathbf{y}_1^{t+1}\right)$$

$$= p\left(y_t, r_t = i \mid \mathbf{y}_1^{t-1}\right)p\left(r_{t+1} = j \mid r_t = i, \mathbf{y}_1^t\right)p\left(y_{t+1} \mid r_{t+1} = j, r_t = i, \mathbf{y}_1^t\right)p\left(\mathbf{y}_{t+2}^T \mid r_{t+1} = j, r_t = i, \mathbf{y}_1^{t+1}\right)$$

$$= p\left(r_t = i, r_{t+1} = j, \mathbf{y}_t^T \mid \mathbf{y}_1^{t-1}\right)$$

故

$$\begin{split} \xi_{t}(i,j) &= \mathbf{p} \Big(r_{t} = i, r_{t+1} = j \, \big| \, \mathbf{y} \Big) \\ &= \frac{\mathbf{p} \Big(r_{t} = i, r_{t+1} = j, \, \mathbf{y}_{t}^{T} \, \big| \, \mathbf{y}_{1}^{t-1} \Big)}{\mathbf{p} \Big(\, \mathbf{y}_{t}^{T} \, \big| \, \mathbf{y}_{1}^{t-1} \Big)} \\ &= \frac{a_{t}(i) s_{t}(i,j) f \Big(\, \mathbf{y}_{t+1} \, \big| \, j \Big) b_{t+1}(j)}{\sum_{k=1}^{K} \sum_{m=1}^{K} a_{t}(k) s_{t}(k,m) f \Big(\, \mathbf{y}_{t+1} \, \big| \, m \Big) b_{t+1}(m)} \, . \end{split}$$

(三) 附表 1

附表 1 气候校准 NHMS-AR 模型中气候因子的有效性及参数估计结果

	• •						
		M1		M2		М3	
		状态 I	状态 II	状态 I	状态 II	状态 I	状态 II
齐次转程	$EAWR^{ma(6)}$ $EAWR^{ma(9)}$ $EAWR^{diff(12)}$	0.014 (0.350) 0.017 (0.434) 0.133 ** (0.064)	0.036 (0.309) 0.087 (0.374) 0.070 (0.056)			0.024 (0.347) 0.018 (0.427) 0.086 (0.063)	-0.121 (0.374) 0.102 *
	$NAO^{ma(12)}$	0.819 *** (0.293)	0.349 (0.239)			0.994 *** (0.297)	0.060 (0.249)
于 矩	PNA	-0.029 (0.125)	-0.090 (0.111)			0.032 (0.124)	-0.050 (0.110)
,,	$PNA^{ma(3)}$	0.228 (0.204)	0.334 * (0.178)			0.053 (0.201)	0.172 (0.176)
的	$PWAA^{diff(9)}$	1.000 **	1.174 ***			1.383 ***	1.298 ***

		(0.504)	(0.452)		(0.499)	(0.456)
	DIVIA diff(9)	-2.233 ***	-0.734		-1.625 **	-0.423
	$\widetilde{PWAA}^{diff(9)}$	(0.740)	(0.649)		(0.731)	(0.645)
	$SOI^{ma(6)}$	-0.650	-0.353		-0.727 *	-0.110
	501	(0.409)	(0.388)		(0.400)	(0.401)
	$SOI^{ma(9)}$	1.034 **	0.607 (0.436)		1.039 **	0.318
	$TNA^{ma(6)}$	(0.453) 0.504	0.430)		(0.444) 1.016 ***	(0.446) -0.320
		(0.369)	(0.331)		(0.375)	(0.344)
	$W\!P^{ma(3)}$	0.574 ***	0.356 ***		0.303 *	0.177
		(0.160)	(0.138)		(0.157)	(0.140)
	$\widetilde{WP}^{ma(3)}$	-0.191	-0.140		0.075	0.096
		(0.218) 0.074	(0.195) -0.038		(0.215) 0.052	(0.194) -0.160
	$WP^{ma(12)}$	(0.303)	(0.257)		(0.301)	(0.260)
	$\widetilde{WP}^{ma(12)}$	0.681	0.011		0.558	-0.097
	WP	(0.425)	(0.366)		(0.422)	(0.370)
	$AO^{ma(6)}$			-0.011	-0.0	
				(0.012)		0.012)
	$\widetilde{AO}^{ma(6)}$			0.014 (0.016)	0.0	14 0.016)
	E ALLED			-0.024 ***		26 ***
	EAWR			(0.005)		0.005)
波	$NAO^{ma(9)}$			0.044 ***		65 ***
动				(0.015)		0.017)
率 系	$\widetilde{NAO}^{ma(9)}$			-0.035 * (0.019)	-0.0	36 * 0.020)
系	ar A O diff(1)			-0.003	-0.0	
统	$NAO^{diff(1)}$			(0.004)		0.004)
性	$NAO^{diff(9)}$ $\widetilde{NAO}^{diff(9)}$ $PWAA^{diff(1)}$			0.005	0.0	03
成八				(0.004)		0.004)
分中				0.006	0.0	
中 的				(0.006) -0.025	-0.0	0.006) 25
气				(0.067)		0.067)
候	$\widetilde{PWAA}^{diff(1)}$			0.129	0.1	
因	$PWAA^{diff(3)}$			(0.093)		0.094)
子				0.082 **		84 *
,	$SOI^{diff(12)} \ TNA$			(0.041) 0.003	0.0	0.043)
				(0.004)		0.004)
				0.090 ***		26 ***
	WP			(0.015)	(0.017)
				0.000	0.0	
			-0	(0.005)		0.005)
总体参数自由度		#69		#53	#83	
对数似然值		-4059		-40567.40	-40539.21	
AIC / BIC		81328.74		81240.80 / 81667.08		/ 81911.99
似然比检验		34.476 [0.262]		90.415 [0.000] ***	146.797 [0.000] ***

注:气候因子参数估计结果中,小括号内为参数估计的标准误,***、**、**分别代表 1%、5%、10%显著性水平;显著非零项以加粗强调,对应的气候因子以浅灰色底色强调。模型整体评价结果中,似然比检验的基准模型(受约束模型)为不含有气候因子的两状态模型,即 M0,模型参数自由度 39;方括号外的数字为似然比统计量,方括号内为卡方 p 值。

(四) 附表 2

附表 2 不同误差分布假定下单状态及多状态随机气温模型的 AIC 评价结果

単状态模型							
分布假定 AIC	st 82026.39	sn 82477.76	t 83575.55	n 84270.33			
双状态模型							
分布假定 AIC	2st 81303.31	sn+st 81350.48	2sn 81412.45	n+sn 81698.43	sn+t 81761.18	n+st 81778.65	
分布假定 AIC	t+st 81782.15	2t 82856.94	n+t 82948.36	2n 82968.06			
			三状态模型				
分布假定 AIC	3st 81066.88	sn+2st 81103.14	2sn+st 81113.39	3sn 81152.35	t+2st 81165.69	n+2st 81199.73	
分布假定 AIC	n+sn+st 81218.80	<i>sn+t+st</i> 81236.85	2sn+t 81241.11	n+2sn 81283.92	2t+st 81510.04	2n+st 81537.98	
分布假定 AIC	n+t+st 81539.84	2n+sn 81560.79	n+sn+t 81564.34	sn+2t 81567.96	n+2t 82589.47	3t 82596.24	
分布假定 AIC	2 <i>n</i> + <i>t</i> 82617.00	3n 82625.43					

注: 符号缩写 n、sn、t、st 分别表示正态、偏正态、学生 t 和偏学生 t 分布,"sn+2st"表示三状态模型选取 1 个偏正态分布和 2 个偏学生 t 分布作为各状态的误差假定,以此类推;AIC 准则下的最优模型使用加粗表示。

(五)附表3

附表 3

气候较准 NHMS-AR 气温模型的整体评价与比较

模型	M0	M0 M1		M3	
总体参数自由度	#39	#55	#44	#60	
对数似然值	-40612.66	-40595.37	-40567.40	-40539.21	
AIC	81303.31	81300.74	81222.80	81198.42	
BIC	81616.99	81743.11	81576.69	81681.00	
似然比检验	_	34.48 [0.005]***	90.42 [0.000]***	146.80 [0.000]***	

注: 似然比检验的基准模型(受约束模型)为不含有气候因子的两状态模型 M0,方括号外的数字为似然比统计量,方括号内为卡方检验 p 值。